
UNIVERSITY OF ST ANDREWS

SENIOR HONOURS PROJECT

OmniPanel:
A Web Control Panel For Distributed,

Heterogeneous Applications

David Jones

Supervisor:
Dr Adam Barker

Second marker:
Professor Saleem Bhatti

April 13, 2012

Abstract

The aim of this project is to develop an extensible middleware capable of exposing the
functionality of many distributed command-line applications within a single web
control panel.
With the rise of Cloud Computing and Infrastructure As A Service, it is becoming
increasingly common for web services owned by a single entity to be provisioned
within separate virtualised containers. As a result of this movement, the mechanisms
that facilitate interaction with these web services are also becoming separated, to the
extent where significant time is spent managing and swapping between different
administrative tools.
OmniPanel is a framework that allows users to build a personalised web interface that
amalgamates the functionality of their remote applications within a single web-page.

The system has been developed with scalability in mind such that many remote
applications can be manipulated within a single session. Furthermore, the library of
remote applications that OmniPanel supports can easily be augmented by third-party
developers thanks to the standardised manner in which OmniPanel exposes its
functionality and its data.
OmniPanel has been used successfully to interact with a simple Java application
deployed upon multiple remote hosts and for the monitoring and administration of a
popular gaming server. Early performance testing suggests that OmniPanel will scale
gracefully to meet the needs of many simultaneous users.

2

3

Declaration

I declare that the material submitted for assessment is my own work except where
credit is explicitly given to others by citation or acknowledgment. This work was
performed during the current academic year except where otherwise stated.
The main text of this project report is 14 197 words long, including project
specification and plan.
In submitting this project report to the University of St Andrews, I give permission for
it to be made available for use in accordance with the regulations of the University
Library. I also give permission for the title and abstract to be published and for copies
of the report to be made and supplied at cost to any bona fide library or research
worker, and to be made available on the World Wide. I retain the copyright in this
work.

Contents

Abstract 2

1 Introduction 7
1.1 Problem Specification . 7
1.2 Useful Definitions . 7

1.2.1 Widget . 7
1.2.2 Deployment . 7
1.2.3 Back-end . 8
1.2.4 OmniPanel . 8
1.2.5 Host . 8
1.2.6 Screen . 8

1.3 Project success . 9
1.4 Outline of report . 9

2 Objectives 10
2.1 Primary Objectives . 10
2.2 Secondary Objectives . 10
2.3 Tertiary Objectives . 10

3 Requirements 11
3.1 Control Page . 11
3.2 OmniPanel Core . 13
3.3 Back-end Scripts . 15

4 Context Survey 16
4.1 Key Areas . 16

4.1.1 Cloud Computing . 16
4.1.2 Cluster Administration . 16

4.2 Existing systems . 17
4.2.1 Puppet . 17
4.2.2 Oracle SALT . 17
4.2.3 Domain Technologie Control . 17
4.2.4 cPanel . 17

5 Ethics 19
5.1 Data Security . 19
5.2 Privacy . 19

4

CONTENTS 5

6 System Architecture 20
6.1 Database Models . 20
6.2 Monitoring A Host . 21

6.2.1 Widget Placeholders . 21
6.2.2 Getting Template Values . 21
6.2.3 Multiple StatePoller Objects . 22
6.2.4 Back-End Involvement In State Retrieval 23

6.3 Manipulating A Host . 24
6.3.1 Exposing Functionality Within A Widget 24
6.3.2 Routing An Interaction . 24
6.3.3 Generating Commands . 25

6.4 Issueing Commands To The Remote Host(s) 26
6.5 Host Discovery . 27

6.5.1 Receiving A Beacon . 27
6.5.2 Reporting Discovered Hosts . 28

6.6 Client Heartbeats . 29
6.7 Designing For Scalability . 30

7 User Manual 32
7.0.1 Deploying A Widget . 32
7.0.2 Monitoring A Host . 35
7.0.3 Manipulating A Host . 36
7.0.4 Uploading New Functionality . 36

8 Software engineering techniques and processes 38
8.1 Agile Programming . 38
8.2 Version Control . 38
8.3 Coding Standards . 39
8.4 Development Logs . 40
8.5 Testing . 40
8.6 Documentation . 41

9 Implementation 42
9.1 Front-end . 42

9.1.1 HTML . 42
9.1.2 CSS . 42
9.1.3 JavaScript and JQuery . 42
9.1.4 DAJAX (Django AJAX) . 45

9.2 Middleware . 47
9.2.1 Pycrypto . 47
9.2.2 PXSSH . 47
9.2.3 Django . 48

10 Testing 49
10.1 Testing Methodology . 49
10.2 Function Testing . 50

10.2.1 Widget Deployment . 50
10.2.2 Monitoring State . 50
10.2.3 Manipulating State . 51

CONTENTS 6

10.2.4 Error Handling . 51
10.2.5 Internal Mechanisms . 53

10.3 Scalability Testing . 54

11 Evaluation 55
11.1 Analysis Of Testing . 55

11.1.1 Function Testing . 55
11.1.2 Scalability Testing . 55

11.2 Comparison To Original Objectives . 56
11.2.1 Primary Objectives . 56
11.2.2 Secondary Objectives . 56
11.2.3 Tertiary Objectives . 57

11.3 Meeting Of Requirements . 57
11.4 Comparison With Similar Software . 58
11.5 Future Work . 59

12 Conclusion 61
12.1 Achievements . 61

12.1.1 Flexibility . 61
12.1.2 Extensability . 61
12.1.3 Scaleability . 61

12.2 Final Conclusion . 62

13 Appendices 63
A Java Colour Server Application . 63
B Colour Control Widget And Script . 63
C CounterStrike Widget And Script . 63
D Host Auto-discovery Beacon Agent . 63
E Pictures From Scaleability Testing . 63

Chapter 1

Introduction

1.1 Problem Specification

The aim of this Senior Honours project is to develop a web-framework that allows for
the simple administration of multiple server instances, all from a single page. The
user can build up a personalised control page by deploying multiple widgets within
free slots on the interface. Widgets are configured on deployment to include the IP
address(es) of the remote machine to be controlled along with login credentials
required to open SSH connection(s).
The motivation for this project is to do away with the need for multiple browser tabs,
all containing a web control panel for a single host or service. Now everything can be
monitored and manipulated from a single place which, once configured, can be
accessed from any web browser in the world. Furthermore, the framework has been
developed in such a way that new functionality can easily be added by external
developers who must simply write the code for the html front-end and python
back-end files. This makes the project hugely flexible allowing the functionality of any
command-line application to be exposed within a web interface. Crucially, the
complex routing of data both internal and networked (via SSH) remains hidden from
the user at all times, creating a transparent routing middleware. This middleware is
named OmniPanel.

1.2 Useful Definitions

1.2.1 Widget

A widget is a section of HTML that can be placed within a slot on a user’s control
page and with which the user can interact. Widgets are defined as HTML containing
special place-holders that are later overwritten by OmniPanel with real values
(showing the current state of a remote application). Widgets also contain HTML form
elements that when submitted, are processed by OmniPanel and an associated
back-end script to manipulate the state of a remote application.

1.2.2 Deployment

A deployment is an instantiation of widget: The widget has been placed on the user’s
control page and the user has provided the IP address(es) and login credentials

7

CHAPTER 1. INTRODUCTION 8

needed to allow the widget to monitor and manipulate a remote host.

1.2.3 Back-end

A back-end is a python script that is directly associated with a widget. When a user
interacts with a widget, any values they submit are passed to the associated back-end
script. The back-end is responsible for listing commands that need to be executed on a
remote server and also parsing a server’s response to certain commands so that
remote applcation state can be determined.

1.2.4 OmniPanel

OmniPanel can be considered as the glue that joins front-end widgets and back-end
scripts together. It is responsible for the correct routing of data, the provision of a
user’s control panel and the issueing of commands over SSH to a remote host.

1.2.5 Host

A host is a remote computer, specified by the user when deploying a widget and with
which OmniPanel interacts via SSH. It is the machine that we contact to ask for an
update of state and the machine we send commands to in order to interact with an
application upon it.

1.2.6 Screen

Screen 1 is an extremely useful tool that runs under the linux and Mac OS operating
systems. It allows for a single user session to be multiplexed over multiple
connections such that many different users can all interact with the same instance of a
program, running within a screen. Normally, unix based operating systems isolate
user sessions such that the running of a program in one session is totally invisible to
anyone else using that same system. Furthermore, when that user ends their session
(by tearing down their SSH connection, for example), the application they are running
will be torn-down too. Screen allows you to ‘detach’ from the application prior to
disconnect such that the program continues to run, even when the user has left.
Some applications, such as an apache server, run as a service daemon on a host and
are therefore persistant and visible across all sessions. For applications that do not run
as a service, such as a Counter-Strike gaming server (simply an executable binary),
screen sessions are invaluable. For this reason, my application fully supports
interactions with applications that are running within screens on a remote host.

1http://linux.die.net/man/1/screen

CHAPTER 1. INTRODUCTION 9

1.3 Project success

A complete, functional implementation of the system has been achieved that meets all
the primary requirements outlined in the project proposal. The OmniPanel sytem
appears robust under trial and is written at a sufficiently high level such that new
functionality can be easily added by external developers. OmniPanel facilitates the
monitoring and manipulation of one or more remote applications through user
interaction with a web interface.
Care has been taken to implement the system in a scalable manner, such that many
servers can be monitored and interacted with in parallel, with components being
carefully managed to preserve system resources. Initial performance data suggests
that OmniPanel does indeed scale well when interacting with multiple remote hosts.

1.4 Outline of report

Objectives: Specification of the primary, secondary and tertiary project objectives.
Requirements: Specification and description of the functional and non-functional
requirements for each part of system (Web Interface, OmniPanel and Back-End Script).
Context Survey: Discussion of technological fields related to the OmniPanel project
and existing systems that solve similar problems.
Ethics: A discussion of the ethical issues related to the OmniPanel project.
System Architecture: Discussion of OmniPanels architecture showing the interaction
of components to achieve project objectives.
User Manual: An introduction to OmniPanels user interface explaining how it should
be used.
Software Engineering Techniques & Processes: A discussion of the various
engineering techniques employed throughout OmniPanels development.
Implementation: A discussion of the various technologies leveraged to implement
OmniPanel.
Testing: A description of the testing methodology employed for OmniPanel
presenting the results of both function and scalability testing.
Evaluation: Provides a discussion of testing results and compares OmniPanel against
original specification and existing systems. Concludes with future work for the
project.
Conclusion: Highlights the main achievements of the project and provides a final
conclusion on project success.

Chapter 2

Objectives

2.1 Primary Objectives

• Allow each user to create their own personalised control page with deployed
widgets remaining persistant between sessions.

• Allow user to monitor and interact with a remote server using a deployed
widget.

• Allow user to extend the functionality of the system by uploading new front-end
widget and back-end scripts that can then be deployed.

2.2 Secondary Objectives

• Allow for a single widget deployment to monitor and control multiple remote
hosts.

• Develop a range of front-end and back-end files to fully demonstrate the
flexibility of the system.

2.3 Tertiary Objectives

• Provide facility for modifying an existing deployment, for example, adding or
removing a host to be monitored and controlled.

10

Chapter 3

Requirements

3.1 Control Page

1. Users can deploy widgets upon their control page to form a configuration that
persists between sessions.
Type Functional
Priority 1
Description The system must be able to store a user’s control page configuration

against their user account so that it remains the same across sessions.
Deployments must retain host information (IPs and user credentials)
along with their position on screen (which slot they are placed in).

Users can issue commands to a remote host through interactions with a widget
on their control page.
Type Functional
Priority 1
Description User interactions must be communicated effectively with the back-end

script such that suitable commands can be generated and sent to the
server (via OmniPanel) to fulfill the user’s request.

2. Widgets on screen must automatically update with new content.
Type Functional
Priority 1
Description It is important that widgets automatically update themselves to show

a new state, without requiring interaction from the user. Furthermore,
it should not be necessary to reload the entire page for each update as
this will deduct significantly from the user experience.

User can specify an unlimited number of hosts to be associated with a single
widget.
Type Functional
Priority 2
Description Front-end must be designed in such a way that an unlimited number

of IP addresses can be entered by the user.

11

CHAPTER 3. REQUIREMENTS 12

On a multi-host deployment, the user should be able to select which host they
want to monitor at any given time.
Type Functional
Priority 2
Description Having a single widget configured against multiple remote hosts works

perfectly for issueing commands but not for monitoring state (there is
no guarantee all hosts share exactly the same state). The user must
therefore be able to dynamically change which individual host they
wish to monitor.

The user should be able to adjust the frequency at which a widget polls for an
update.
Type Functional
Priority 2
Description The frequency with which a new state needs to be retrieved from a host

depends on the application running upon it. Monitoring a game server
will likely require far more regular updates than the monitoring of a
file-system, for example.

It should be possible for hosts to be automatically discovered on a network
without the need for manual user input.
Type Functional
Priority 2
Description In situations where many hosts need to be controlled via one widget,

it would be desirable to avoid manual IP input. A host discovery
mechanism based on UDP multi-cast should help us to automatically
discover clients on the local network.

It must be possible for a user to extend the functionality of the system to meet
their needs.
Type Functional
Priority 1
Description The system must be developed in such a way that the middleware is

abstract enough for any front-end and back-end implementations to
integrate successfully. The user could upload custom front-end and
back-end files via the HTML control page.

User interactions must be realised within an acceptable amount of time.
Type Non-Functional
Priority 1
Description When a user interacts with a widget to issue a command, they should

see the result of this command soon after. Failure to meet this
requirement will likely result in repeat interactions thus leading to
unwanted state on the remote host.

CHAPTER 3. REQUIREMENTS 13

Users must be made aware of any errors that occur within the system.
Type Functional
Priority 1
Description If an error occurs within the system, for example, an SSH connection

cannot be established due to incorrect credentials, the user must be
made aware of this.

The system must respond gracefully to unexpected events.
Type Non-Functional
Priority 1
Description Since the system integrates directly with remote systems outside of our

administration, it must be able to tolerate external misbehaviour e.g. a
host crashing or abruptly terminating an SSH connection. Automatic
reconnection should be attempted and the user should be informed.

3.2 OmniPanel Core

Middleware must correctly route user interactions to a back-end script for
processing.
Type Functional
Priority 1
Description It is essential that the correct interactions are routed to the correct

back-end scripts else there is a real danger of nonsense commands
being transmitted to the server(s).

Middleware must expose data in a predictable, consistent manner.
Type Functional
Priority 1
Description In order for external developers to write custom front-end and

back-end files, the middle-ware must behave in a predictable manner.
The same data structures must always be passed between middleware
and back-end and these structures must contain the minimum amount
of data needed for the back-end to function correctly.

Middleware must be able to manage SSH connections for transmission of
commands on behalf of the user.
Type Functional
Priority 1
Description SSH connections must be created on demand, stored and torn-down as

required by the user.

The OmniPanel core should be able to interact with a remote host without the
need to modify the host.
Type Functional
Priority 1
Description Requiring that a remote host be modified in some way (installing

software, opening ports, adding certificates) will reduce uptake of the
OmniPanel system.

CHAPTER 3. REQUIREMENTS 14

System must promote scaleability by allowing the reclaim of resources
Type Functional
Priority 1
Description As the user interacts with the system, the resources they require (open

SSH connections, communication with back-end scripts) will vary. The
system must intelligently track which resources are no longer needed
and reclaim them for use by other users.

System must promote scaleability by allowing the sharing of resources
Type Functional
Priority 1
Description The system must be able to detect scenarios where existing resources

can be shared by multiple components. For example, when two
deployments monitor the same screen session on the same remote host,
there is no need to setup two connections to poll for state. One poll can
support both front-end updates.

System must promote scaleability through the synchronisation of client →
middleware, middleware → server polling
Type Functional
Priority 2
Description If the user has set their front-end widget to poll for an update every 20

seconds then there is no need for the middle-ware to be contacting the
server every 5 seconds - The majority of the updates will never be seen
by the user. The middleware should match it’s rate of polling to that of
the client.

System must ensure sensitive user data is kept secure at all times
Type Functional
Priority 1
Description Files containing sensitive data should be encrypted using the latest

in cryptographic functions. Furthermore, these files should be
automatically deleted from the system when they are no longer needed.

The system should promote third-party development.
Type Non-Functional
Priority 1
Description Since the success of OmniPanel is highly dependant on it’s ability

to interact with a range of remote applications, we must encourage
third-party development by exposing functionality and data in a
standardised, well-understood manner.

The system should be easily deployed upon a standard unix web-server.
Type Non-Functional
Priority 1
Description To ensure that OmniPanel meets the demands of its user-base, we must

ensure that it is easily deployed on a standard unix web-server at short
notice. This way, traffic load can be balanced across multiple servers to
cope with times of high-demand.

CHAPTER 3. REQUIREMENTS 15

3.3 Back-end Scripts

Back-end must be able to process a user’s interaction
Type Functional
Priority 1
Description Submitted data from the user’s interaction should be passed to the

back-end script which can then output the commands needed to realise
the user’s request

Back-end must be able to supply instructions needed to query server state
Type Functional
Priority 1
Description The commands needed to retrieve server state will vary between

application and therefore will need to be passed from the back-end to
the middleware

Back-end must be able to process a server’s response
Type Functional
Priority 1
Description Once the commands have been sent to query a server state, the response

must be parsed to extract the relevant information.

Back-end must be able to supply the middleware with new HTML placeholder
values to be rendered in widget.
Type Functional
Priority 1
Description After extracting relevant information from server responses, the

back-end must be able to match this information to HTML placeholders
so it can be displayed to the user in their widget.

Chapter 4

Context Survey

4.1 Key Areas

4.1.1 Cloud Computing

Cloud computing refers to applications that are delivered over the internet and the
range of technologies that underpin their functionality [1].
Closely coupled to the emergence of cloud computing is the development of
Infrastructure As A Service (IAAS); a system in which IT infrastructure is delivered by
virtual machines housed within large data centres [9].
Cloud computing is becoming ever popular with revenue predicted to grow from
$56B in 2009 to $150B in 2013 [10]. One of the primary drivers for this mass uptake is a
companys ability to migrate their computer systems to external providers, thus
outsourcing the responsibility of maintenance and furthermore, only paying for the
computational resources they use. [1]
With companies such as Amazon’s Elastic Computer Cloud (EC2) making cloud
computing increasingly accessible to the masses, it is common for systems that once
stood within the same physical location to now be spread between different data
centres located all over the globe. This is a primary motivator for OmniPanel’s
development, making it possible for system administrators to amalgamate
geographically distributed systems in to a single control page through which they can
monitor and manipulate the entirety of their system.

4.1.2 Cluster Administration

Since the 1980’s, computer architects have been trying to find ways to create
increasingly powerful and increasingly efficient computer processors. This began with
attempts to improve the traditional, sequential computer processor before deviating in
to the realms of expensive parallel computing. In the early 90’s, scientists began to
investigate the use of many cheap, commodity computers, the resources of which
could be combined to help solve a single, complex problem [2]. This collaboration of
many low-specification devices is known commonly as Cluster Computing.
Navarro [6] describes how the emergence of Cluster Computing presents many new
challenges to the field of computer administration. Whilst traditionally, computers on
a network could be serviced manually by technicians, this approach becomes
infeasible when your cluster encompasses hundreds of nodes. There is call, therefore,
for new administrative tools to help us manipulate entire clusters through a single

16

CHAPTER 4. CONTEXT SURVEY 17

interaction.
One approach to solving this problem is to regularly flash the same operating
environment upon each node in a cluster, thus removing the need to continually
ensure all nodes are pulled in to the same state [8]. Whilst this solution is elegant for
homogenous nodes, it is not applicable for situations where different nodes must be
setup with different environments.
An objective of OmniPanel, therefore, is to allow interaction with many instances of
the same application running within different environments, via a single Control
Panel widget.

4.2 Existing systems

4.2.1 Puppet

Puppet [5] is arguably the most well known IT automation package available on the
market today. It is used by many organisations to simplify the administration of their
servers, be there tens, hundreds or thousands of different machines located on-site or
within the cloud. Primarily, Puppet is used as a tool for updating the configuration of
a remote machine, for example, updating a particular library across all your hosts or
amending the location to which a log file is written. Puppet allows you to define this
new setup using their new declarative configuration language which can then be used
as a rule-base to ensure that all remote machines comply.

4.2.2 Oracle SALT

SALT [7] (Service Architecture Leveraging Tuxedo) is an addon for the popular
transaction-oriented middleware, Tuxedo. Tuxedo was originally designed to
facilitate transaction processing for an application that is distributed over multiple
machines and needs to support thousands of interactions each second. SALT develops
Tuxedo further so that it can be used to interconnect many different systems together,
first by exposing them as a web-service and then using Tuxedo to manage their
communication. A web service essentially takes all the functionality provided by a
back-end and represents it as a single entity on a network with which other entities
can interact.

4.2.3 Domain Technologie Control

Domain Technologie Control [4] (DTC) provides a web-control panel that allows for
the quick and easy provision of a server instance, be that a new SQL server, an apache
host or a VPS (Virtualised Private Server). Essentially, it is a tool that allows a system
administrator to lease out hosting to paying clients; DTC is installed on a high
specification server machine and can be used to partition system resources in to
multiple, logically seperated services owned and used by different customers.

4.2.4 cPanel

cPanel [3] is the de facto standard when it comes to web control panels. It is offered by
almost all web-host providers nowadays allowing customers to tailor their
web-hosting to match their individual needs. For example, cPanel allows a customer

CHAPTER 4. CONTEXT SURVEY 18

to easily create a new email account for their domain, install many common web
applications such as the Wordpress blogging system and for more advanced users,
even schedule automated jobs and launch ruby-on-rails applications.

Chapter 5

Ethics

5.1 Data Security

Due to the nature of this project, it is unavoidable that users will have to divulge
sensitive information such as the IP addresses of their remote servers and more
importantly, the credentials needed to open a secure channel with these machines.
Without asking the user to supply this information, the only way OmniPanel could
monitor or manipulate the state of a server would be via the use of an agent installed
upon the remote host itself. This violates a functional requirement of the OmniPanel
system stating that a remote host should not require modification for OmniPanel
interaction.

It is essential that all data collected from users is stored in a secure manner. For each
deployment, the associated host and user data is written out to a file and encrypted
using DES3, the latest variant of the Data Encryption Standard. Furthermore, data is
only retained for the period in which it is needed by the system - when a user deletes
a deployment, the associated data file is deleted also.

5.2 Privacy

Since my system is effectively a web front-end to a number of remote services, it
would be possible to monitor and log interactions to watch how clients use their
applications; the commands they issue and at what times of day, for example. Storage
of this information contributes nothing to the functionality of the system and would
no doubt deter many clients from using the system at all. For this reason, user
interactions are not logged by any components in the system.

19

Chapter 6

System Architecture

6.1 Database Models

Figure 6.1: The three database models of OmniPanel

The diagram above shows the three main database models that underpin the
OmniPanel system.
Any users registered with the system has their own ‘User’ object containing their first
and last name, email address, password and access credentials.
A user owns one or more deployment; an instance of a widget that has been
configured against remote host(s) and added to a slot upon the user’s control page.
Finally, a widget contains a name (which is displayed in the widget library),
content/template (in the form of HTML) and an associated back-end script (used to
parse the server’s state and process user interactions).

The Deployment Host File
OmniPanel imposes no limit on the number of hosts that can be configured against a
single deployment. For this reason, it is impractical to store host information within
the OmniPanel database as a single table field may not be large enough and adding a
new table row for each host seems wasteful.
Instead, host information is written to an encrypted file and associated directly with a
deployment instance, depicted in the diagram above as the Host File attribute.

20

CHAPTER 6. SYSTEM ARCHITECTURE 21

6.2 Monitoring A Host

6.2.1 Widget Placeholders

OmniPanel presents current server state to a user through the run-time injection of
values in to a widget template. When defined, widgets are HTML documents that
contain special place-holder strings (denoted using ‘!!’ characters). These placeholders
can then be replaced by the OmniPanel system at run-time to populate the widget
template with meaningful data:

Figure 6.2: Representing server state to the user

Current Colour : ! ! CURRENT COLOUR ! !

Figure 6.3: Example usage of widget placeholders (frontends/ColourWidget.html)

6.2.2 Getting Template Values

Figure 6.4: UML diagram of StatePoller object

The component responsible for provision of template values used to overwrite
place-holders at run-time, is the StatePoller object.
A StatePoller object encapsulates an SSH connection to a remote server. It contains,
therefore, an IP address, an SSH username and an SSH password.
It also stores TemplateValues, the latest set of template values it has generated, ready
for injection in to widget content. The DoPoll function runs every x seconds, issueing
commands to the server and processing its response to get new template values.
The GetTemplateValues function is used by OmniPanel to retrieve the latest set of
template values.
The Subscribe and Unsubscribe functions are used to keep track of how many
deployments are making use of a StatePoller object, ensuring it is not torn-down
whilst it is still needed (this is explained more on the next page).

CHAPTER 6. SYSTEM ARCHITECTURE 22

6.2.3 Multiple StatePoller Objects

Since a StatePoller object is associated with only remote host, we find that many
StatePoller objects must exist simultaneously within the middleware. In order to
conserve resources, StatePoller objects are spawned and torn-down as required. For
instance, a deployment that has been configured against 10 remote servers will not
have 10 StatePoller objects existing in parallel, instead, only one StatePoller object will
be instantiated, to facilitate monitoring of the single host the user has selected in their
widget at that time. If the user changes the host they wish to monitor, the old poller
will be torn-down and a new one instantiated.
To further support scalability, StatePoller objects can be shared between multiple
deployments when these deployments are configured against the same remote hosts.
This does, however, mean we have to take extra care when tearing down resources;
even though the original parent deployment may no longer be online, other
deployments may still be using the resource:

Figure 6.5: Process diagram for poller sharing. Preserve or Teardown?

CHAPTER 6. SYSTEM ARCHITECTURE 23

6.2.4 Back-End Involvement In State Retrieval

Ascertaining the values that are to be injected in to a template is a two stage process.
First, appropriate commands must be issued to a remote host and its response must be
captured. Secondly, the response(s) from each command must be parsed to extract
relevant information.
Since the commands that must be issued and processing that must be performed is
entirely application specific, this functionality must be offloaded to an application
specific back-end script.
The diagram below depicts the interaction between the OmniPanel Core, a StatePoller
object and a back-end script.

Figure 6.6: Component interactions for retrieving template values

It is important to note that for simplicity, figure 5.4 depicts synchronous interaction
between all components. In reality, the StatePoller component behaves autonomously,
retrieving new widget values on a regular basis. If new values were to be retrieved
only on demand, the client would have to wait for a server’s response to be retrieved
and processed, introducing unnecessary delay.

Compulsory Back-end Functions

get state cmds
A compulsory function that returns a list of commands that must be executed on
remote host to retrieve application state.
Input: None
Output: cmds - List of commands that must be executed on remote host.

process state
A compulsory function that parses a server’s response to status commands and
returns values to be rendered in widget HTML.
Input: responses - List of server responses ordered chronologically, one list entry per
instruction issued.
Output: template values - Meaningful values extracted from server response(s), used
to overwrite place-holders in front-end widget.

CHAPTER 6. SYSTEM ARCHITECTURE 24

6.3 Manipulating A Host

6.3.1 Exposing Functionality Within A Widget

In order for a user to manipulate the state of a remote host, a deployed widget should
clearly present all the functionality it provides.
For example, the widget developed to manipulate the colour of a remote computer’s
monitor presents the three colour options within a drop-down menu.
There are no restrictions on the HTML input elements that can be used within a
widget. All that matters is that related input elements are defined within the same
HTML form. When this form is submitted by the user, all of the related input data will
be passed to a single function for processing.

<html>
<h2>Colour Management</h2>
<form method=” post ” a c t i o n =” i n t e r a c t / ! ! s l o t i d !!/”>

<input type=”hidden” name=” funct ion ” value=”manage colour ” />
Current Colour : ! ! CURRENT COLOUR ! !

Set Colour :
<s e l e c t name=”NewColour”>

<option>Red</option>
<option>Green</option>
<option>Blue</option>

</s e l e c t>

<input type=”submit” value=”Update” />

</form>
</html>

Figure 6.7: Widgets are essentially HTML forms with a few compulsory fields

6.3.2 Routing An Interaction

Users are able to manipulate the state of a remote host by representing their desired
state within a HTML form (part of the widget). When the form is submitted to the
OmniPanel system, input data is routed to a back-end script for processing.

Figure 6.8: Routing A Widget Interaction To A Back-end Function

CHAPTER 6. SYSTEM ARCHITECTURE 25

OmniPanel determines which widget has submitted data based upon the slot in
which the widget is deployed. This value is automatically injected by OmniPanel at
run-time when a new deployment is made.

<form method=” post ” a c t i o n =” i n t e r a c t / ! ! s l o t i d !!/”>

Figure 6.9: Widget definitions have a compulsory place-holder for routing

Knowing which widget submitted data allows us to identify the back-end script that
must handle the interaction. Since multiple forms can exist within a single widget, we
must also know which script function processes this specific form. This is defined by
the original widget author within a hidden form input field.

<input type=”hidden” name=” funct ion ” value=”manage colour ” />

Figure 6.10: A hidden form field identifies the function to process interactions

6.3.3 Generating Commands

Once a user interaction has been routed to the correct back-end function, the data they
entered must be processed to generate the command(s) needed to fulfill their request.

Figure 6.11: Script functions process user input to generate application commands

The POST data uploaded from a widget HTML form is passed in to the appropriate
back-end function within a python dictionary. The motivation for this is that the
dictionary can easily be keyed to match the name of the input element from which the
data has been extracted. For example, to access the colour that the user selected from
the colour drop-down menu (see widget definition above), we simply use the
following code fragment:

formDict [’ NewColour ’] [0]

Figure 6.12: Accessing form values within the back-end script

‘NewColour’ was the name of the HTML ‘select’ element defined with the widget and
since this input element returns only one value, the data is available in index zero.
The commands to be issued to a server are passed from the script to the OmniPanel
system within a Python list object.

CHAPTER 6. SYSTEM ARCHITECTURE 26

6.4 Issueing Commands To The Remote Host(s)

Figure 6.13: Key Components In The Transmission Of Commands

The diagram above depicts how a deployment relates to a CommandQueue and
SSHCommandChannel, two components that are essential in the transmission of
commands from OmniPanel to one or more remote host.
Once commands have been generated by a back-end script, OmniPanel places them
within a queue of commands that are awaiting transmission.
A CommandQueue object is nothing more than a standard python Queue. A
command queue is observed by one or more SSHCommandChannel object.
A CommandChannel object encapsulates a single SSH connection to a remote host.
For a multi-host deployment, therefore, we will spawn multiple channel objects.
All channel objects belonging to a single deployment monitor the same command
queue. This reduce computational complexity and conserves system resources as
having seperate queues would be needlessly expensive. One complication of having
multiple objects operating over the same queue is that a channel cannot remove an
item from the queue (in case it hasn’t yet been seen by another channel).
Each channel object therefore holds the size of the queue the last time it was inspected
within an attribute called QueueLength. If a queue has grown in length since the last
inspection, new commands must be issued to the remote host.

Figure 6.14: Key Components In The Transmission Of Commands

CHAPTER 6. SYSTEM ARCHITECTURE 27

6.5 Host Discovery

6.5.0.1 Sending A Beacon

The autodiscovery feature of Omnipanel allows for hosts on a local network to be
automatically discovered and configured against a deployment, without interaction
from the user.
The system is underpinned by local hosts regularly transmitting a specialised message
via UDP multicast, this special message is referred to as a beacon.
In order for a host to transmit a beacon message, a small application must be installed
on the host itself. This application is referred to as a Beacon Agent (See Appendix D).

Figure 6.15: A Beacon-Agent sends beacons across the network

Each beacon message transmitted from a client contains an identifier string, the value
of which can be altered within the application configuration file.
The identifier payload of a beacon message makes it distinguishable from other
beacon traffic, allowing different subsets of hosts to beacon simultaneously and yet be
discovered as separate groups.

6.5.1 Receiving A Beacon

Omnipanel contains two components that are integral to the host discovery
mechanism:
A BeaconListener object binds to a specific multicast address and port, specified in
the Omnipanel settings file, and listens for beacon messages. Any Beacon messages
that are received are reported to a BeaconManager object.

Figure 6.16: Incoming beacons are reported to a BeaconManager

CHAPTER 6. SYSTEM ARCHITECTURE 28

The BeaconManager object keeps a list of all the IP addresses that beacon with a
specific identifier.
It is important that an IP address is not appended to a list more than once else we run
the risk of configuring a single deployment against the same host multiple times:

Figure 6.17: Process diagram avoiding duplicate IP entries.

6.5.2 Reporting Discovered Hosts

The final step in the autodiscovery process is for a list of discovered IP addresses to be
returned to the user.
This occurs when a user makes use of the auto-discovery tool within their HTML
front-end. Rather than manually entering the IP addresses of all hosts to be controlled,
the user can specify a beacon identifier to search for. This identifier value is
transmitted via AJAX to the OmniPanel core where is then used as a lookup key on
the BeaconManager object. The manager will return a (potentially empty) list of IPs
that have been known to beacon with that identifier. This list is then forwarded to the
client for display in their table of configured hosts.

Figure 6.18: Component interactions for automated host discovery.

CHAPTER 6. SYSTEM ARCHITECTURE 29

6.6 Client Heartbeats

Figure 6.19: Overview of HeartBeat Mechanism

Omnipanel makes use of a client heartbeat mechanism to determine whether a user is
still using the system or whether they have navigated away from their control panel.
This information is useful as we want to tear-down any Omnipanel resources that
have been provisioned for that user whenever they are no longer needed.
Whilst the Omnipanel Control Page is open within a user’s browser, it will transmit a
heartbeat message every 30 seconds. Upon receipt at the Omnipanel web-server, the
heartbeat is forwarded to the HeartBeat Manager component where we record the
timestamp of that heartbeat.
The HeartBeat Manager runs a scan every 40 seconds using timestamps to detect
when a user has missed a heartbeat. It allows a period of grace whereby a single
heartbeat can be skipped without resource tear-down - this allows for possible
network issues where the heartbeat message may simply have been lost enroute. If
two heartbeats are missed, however, the HeartBeat Manager informs the OmniPanel
core that the user has closed their session and that resource tear-down should begin.

Figure 6.20: Determing Whether A Client Has Died

CHAPTER 6. SYSTEM ARCHITECTURE 30

6.7 Designing For Scalability

OmniPanel has been written with scaleability in mind throughout. With the potential
for OmniPanel to be deployed on a central web server and made available to the
general public as a whole, it is essential that it can scale to meet demand.
Allow us to discuss some of the deliberate design choices taken to promote
scaleability within Omnipanel.

6.7.0.1 On-Demand Resource Spawning

OmniPanel adopts an on-demand approach to resource spawning, only provisioning
resources to a user when they are definetely required. For example, when a user
creates a multi-host deployment, OmniPanel does not open SSH connections to all
associated hosts. Instead, a StatePoller component is spawned to communicate with
the single host that the user has chosen to monitor via their widget at that point in
time. Furthermore, if the user chooses to change the host they wish to monitor, the
existing StatePoller component is torn-down prior to spawning of a new one. With the
current limitation on the number of available deployment slots, it is therefore only
possible for each user of the system to have a maximum of four StatePoller
components running within the system.

6.7.0.2 On-Demand Resource Teardown

Any components that are spawned within OmniPanel are directly associated with the
user to whom they belong. If that user logs out from the system or navigates away
from the ControlPage for longer than 60 seconds, any associated components are
automatically torn-down allowing OmniPanel to reclaim the resources they consume.
Furthermore, a subset of the users components may be torn-down whenever a user
deletes a deployment, allowing for reclaim of any StatePoller and CommandChannel
objects, for example.

6.7.0.3 Resource Sharing

Whenever possible, OmniPanel tries to prevent the spawning of a duplicate
components by identifying when a single component can be used to service multiple
requests. For example, if a user has two deployments that both interact with the same
remote application on the same remote host, it is possible for each of those
deployments to use the same StatePoller object. Now, contacting the remote host and
parsing of it’s response need only be performed once, with new widget content being
pushed to both deployments. Sharing of resources not only conserves system
resources, it also reduces computational overhead with response processing being
performed once rather than twice.

6.7.0.4 Synchronisation Of Polling Processes

As has already been discussed in the design section, the monitoring of a remote
applications state is underpinned by two distinct polling processes; one between the
user and OmniPanel and a second between OmniPanel and the remote server.
OmniPanel uses timestamps to measure how often the front-end polls for an update
and uses this value to adjust its own internal polling frequency. Use of this

CHAPTER 6. SYSTEM ARCHITECTURE 31

mechanism ensures that OmniPanel is not wasting resources polling for remote state
when this state is never actually transmitted to the user.

6.7.0.5 A Global Widget Library

Whenever a new front-end back-end pairing is uploaded to OmniPanel, the front-end
HTML is written in to the Django database and the back-end script is output to disk.
For this reason, the library of available widgets is global across the OmniPanel system
meaning that when new functionality is uploaded by a single user, it can be seen and
deployed by all system users. If widget libraries were local to a single user only, we
would no doubt have significant data duplication on disk as many users upload and
use the exact same functionality.

Chapter 7

User Manual

The entire user interface is exposed within a HTML web browser.

Figure 7.1: The User Control Panel

The widget deployment process by the user selecting the widget they wish to deploy
from a library of available widget displayed on the left of their Control Panel.

7.0.1 Deploying A Widget

Figure 7.2: Select A Widget From The Library

32

CHAPTER 7. USER MANUAL 33

Next, a configuration menu is displayed to the user allowing them to input the
information needed for a successful deployment. Specifically, the user must provide
the IP addresses and credentials needed to access remote machines. This information
can be input by the user via a variety of mechanisms:

Figure 7.3: The Deployment Configuration Window

7.0.1.1 Manual IP Input

The user is able to manually input IP and SSH information within a HTML table in the
configuration menu. Initially, fields are only visible for configuration of a single host
as only one host is required for use of the system. This also helps to keep the
configuration menu as de-cluttered and simple as possible. Additional hosts can
easily be configured by simply clicking the ‘+’ icon which will reveal new input fields
for the user to complete.

Figure 7.4: Manual IP Input Table

7.0.1.2 Inputting A Contiguous Range of IPs

A common use-case is for the user to want to control multiple hosts within a range of
IP addresses all on the same subnet. Imagine, for example, a scenario where a lecturer
wants to trigger the playback of a video on each student computer within a lab. This
use-case is covered by the option to ‘Add A Range Of IPs’, a link on the page that
when selected, reveals an additional deployment dialogue to the user (figure 6.5 over
page):
The dialogue prompts the user to enter the common portion of the IP address range
(The Subnet) along with the lowest and highest number hosts within that range.
Finally, the user must provide the username and password needed to access each
machine in the range. It is assumed that all machines share the same login credentials
as they are all in the same physical location, under the same administration and
probably share the same authentication mechanism.

CHAPTER 7. USER MANUAL 34

Figure 7.5: Inputting A Range Of IPs

7.0.1.3 Automatic IP Discovery

Finally, rather than manually entering host IP addresses or specifying a contiguous IP
address range, the user can use an auto-discovery mechanism to find IP addresses of
hosts advertising themselves on the local network. This allows the user to quickly
configure a multiple host deployment without the need for manual IP input even
when the hosts don’t occupy a contiguous range of addresses.

Figure 7.6: Host AutoDiscovery Tool

Use of the auto-discovery tool simply involves the user specifying a beacon identifier -
a word or string that the system should look for on the network. Any hosts that are
found to be broadcasting this identifier are detected by the middleware and their IP
address is automatically appended to the user interface. Forwarding to the user
allows us to verify that the address is correct and also allows them to the enter the
username and password needed to open connection with each host.

7.0.1.4 Common Options

Figure 7.7: Screen identification and Slot selection

Regardless of how the user decides to input host address and access credentials, there
are two additional fields that must be completed prior to deployment. Firstly, the user
must select from a list, the slot in to which the widget is to be deployed. At present,
the user control page allows a user to have only four simultaneous deployments
though this could easily be expanded at a later date. The user must decide which slot
to deploy to, bearing in mind that deploying in to an occupied slot will delete the
previous deployment.
Secondly, the user must provide the identifier of the screen session that their target
service or application runs within. As has already been described in the project

CHAPTER 7. USER MANUAL 35

introduction, it is assumed that all applications run within screen sessions due to their
multiplexed and persistent nature.

7.0.2 Monitoring A Host

Once a widget has been deployed, it can be used to monitor the state of one or more
remote hosts.
The state of a server is presented to the user by over-writing placeholders within the
template. The diagram below shows a template before placeholders have been
overwritten:

Figure 7.8: Unpopulated Widget Template

Once the middleware polls the remote server and it’s response is processed,
replacement template values are used to populate the template appropriately:

Figure 7.9: Populated Widget Template

7.0.2.1 Adjusting A Monitor

Widgets will automatically update themselves with new content on a regular basis so
users can view the latest state simply by watching their control page. In order to
conserve resources and maintain a strong user experience, it is possible to adjust how
often a widget polls for an update.
Furthermore, the user is able to select which remote host they wish to monitor
(assuming a deployment has been configured against multiple IPs).
Both the refresh rate and the IP to monitor can be set by the user by manipulating
these options at the top of each widget: Each widget header also gives the option to
delete a deployment thus freeing up a slot on the user’s control page and tearing
down all associated resources in the middleware.

CHAPTER 7. USER MANUAL 36

Figure 7.10: Adjusting monitor refresh rate and remote host

7.0.3 Manipulating A Host

Manipulating the state of a host is a simple as representing your desired state within
the HTML widget and submitting it to OmniPanel. The screenshot below shows how
the proof-of-concept ‘Colour’ widget exposes the three possible states that can be
selected by the user. The user selects the colour they wish to set on the remote host
and submits it using the ‘Update’ button.

Figure 7.11: Inputting Desired State For Remote Application

7.0.4 Uploading New Functionality

One of the features that makes OmniPanel so unique is the user’s ability to extend the
functionality of the system via the upload of new widgets and back-end scripts. The
upload dialogue is accessed via the ‘Upload A New Widget’ link at the bottom of the
widget library.

Figure 7.12: Display The Upload Dialogue

Clicking the link reveals the following upload dialogue:

Figure 7.13: Uploading New Functionality

The ‘Name’ field is used to identify the newly uploaded widget within the library.

CHAPTER 7. USER MANUAL 37

The two file upload fields allow the user to upload a HTML file containing the
front-end widget and a python script containing the back-end functionality.

Chapter 8

Software engineering techniques
and processes

8.1 Agile Programming

In the early stages of this project, a basic system architecture was drafted. The
architecture defined the different components of the system, the functionality they
would expose and the different ways they would interact. Very quickly, it became
apparent that this system was simply too large and too complex to design entirely
upfront. Instead, it was decided that breaking down the project in to a series of
milestones would be a better design approach.
Typically, each milestones marked the realisation of a particular feature within the
system such as the ability to deploy a widget within a slot or the ability to issue a
command to a remote server. This process of breaking down your system in to set of
features and implementing them one at a time is known as Feature Driven
Development. Feature Driven Development is just one of the many methods that are
considered Agile. Agile means that no plans are set in stone before development
begins, strongly contradicting the traditional water-fall model where you always fully
plan and design prior to implementation. The benefit of Agile development is that it
helps you to realise shortcomings in your design at an earlier stage, leaving you more
time to reconsider and redevelop your codebase. It also helps you to discover the
limitations of libraries and technologies you have chosen to use - on several occasions,
the OmniPanel codebase was refactored not due to a poor design choices but simply
due to limitations imposed by third-party tools.

8.2 Version Control

Before work began on writing the OmniPanel codebase, a new version control
repository was setup for the OmniPanel project. The use of version control is essential
for any large-scale project as it protects you not only against a loss of code should
your local copy be lost or corrupted, but also helps you to rollback any detrimental
code changes such as the accidential introduction of a bug in your system. The
SubVersion version control system was chosen due to familiarity from previous
projects and the fact that it integrates so easily with the Ecliple IDE. SubVersion has, in
the past, caused problems when two different people try to commit changes on the
same file but this problem should never arise when a project has only one code

38

CHAPTER 8. SOFTWARE ENGINEERING TECHNIQUES AND PROCESSES 39

contributor. The functionality of SubVersion with augmented with the Trac tool 1, an
open source project that allows you to explore your project repositories via a web
front-end. Trac allows you to see a Timeline of your code commitments, colouring
lines in the code that have been modified since the last commitment as well as hosting
a project wiki, bug tracker and RoadMap of past and future milestones. Whilst many of
these features are aimed at projects that have many contributors, trac proved
invaluable helping us to visualise progress through the project.

8.3 Coding Standards

One of the biggest problems faced when developing in an agile manner is a constantly
evolving code-base. The way in which a functionality is exposed or even the
component responsible for exposing that functionality can change due to amended
design choices or limitations imposed by system libraries. To cope with this, one must
employ a very disciplined approach to coding. If the way in which a function is
exposed changes, adding or removing parameters to a function call, for example, it is
wise to consider all the places where that function can be called from and update that
code immediately. Enforcing this behaviour not only helps to prevent run-time
exceptions where nonsense arguments are passed, but also helps developers to get a
bigger picture of how their system now functions. It is often the case that studying
when and where functions are called, leads to the development of an optimal system
architecture where functionality is placed near to the components that need it most
(thus reducing complexity and often improving performance).

There are several additional techniques that are fundamental to producing a high
standard of code. Firstly, one should always be able to see what a section of code is
doing without having to compile and run the source. This can usually be achieved
through the use of meaningful variable names and the occasional comment to explain
a particularly convoluted conditional statement. Perhaps even more important is the
correct use of indentation and formatting so you can see which code runs as a result of
a condition or which functions are called repeatedly within a loop. Our decision to
use Python as a core programming language forced us write well formatted code as
python parses the source based on indentation, rather than on the use of brackets like
in languages such as Java.

Finally one must take care to remove redundant code from your code-base. Adapting
to a constantly evolving design is unfortunately not as simple as just updating
function calls, developers must also consider whether any of the surrounding
codebase is now surplus to requirements. Failure to do so not only wastes resources
(you don’t want redundant code executing on a low specification, embedded device)
but also serves to confuse any engineers in the future who are trying to understand
your source.

1http://trac.edgewall.org/

CHAPTER 8. SOFTWARE ENGINEERING TECHNIQUES AND PROCESSES 40

8.4 Development Logs

Multiple logs were kept throughout the development process to document design
decisions and any problems that were encountered along the way.
The motivation for these logs was two-fold; Firstly, with so much development
needing to be done and so many components to keep track off, it was unlikely that the
justification for all design decisions could be recalled at the end of the project. Since
this information is of value within this report, logs were kept so that key design
decisions could be explained clearly.
Secondly, in the early stages of the OmniPanel project, a lot of time was lost resolving
coding problems that later turned out to be very trivial mistakes. Even more
frustratingly, a few of the mistakes such as an incorrectly formatted import statement
were made more than once costing just as much time on the second occasion as they
did the first. For this reason, a log entry was created for mistakes that were deemed
easily repeatable in the hope of finding a quick solution later in the development
process.

8.5 Testing

Due to the highly modular design of my system, it was essential that all components
be tested on a regular basis. Failure to test the behaviour of a single component may
well compromise the entire system and worse still, makes it very hard to ascertain
exactly what went wrong once all the components have been integrated together. Due
to the complex interactions between components and the fact that many functions
pass back python objects rather than literal values, OmniPanel did not lend itself to
comprehensive unit testing. Instead, great care was taken to consider dangerous
edge-cases when writing the code, ensuring that no unsafe assumptions were being
made. In any scenario where something could potentially go wrong, failure to retrieve
a deployment object from the database, for example, code is encapsulated within
python ‘try’ and ‘except’ statements. This allows for the printing meaningful error
messages to the console or to system logs before gracefully returning from a function.
Alongside the inclusion of meaningful error messages, a context-driven approach to
testing was adopted throughout. This meant that once enough components had been
developed and integrated together, the system was tested through use of its
functionality (monitoring and controlling remote machines). The Senior Honours lab
was the perfect testing environment due to the high number of machines free to use at
any time.
Finally, one of the most important factors influencing the uptake of the OmniPanel
system is the question of scalability. At the end of Chapter 6 we describe exactly how
the system was designed and implemented with scalability in mind. Unfortunately,
reassuring oneself that true scalability has actually been achieved is no easy task. The
obvious solution is to stress-test the system, monitoring and manipulating many
different hosts in parallel. Unfortunately, even with all the lab machines at our
disposal, there are insufficient resources to really push the system to its limits. Instead,
all we could do is re-assure ourselves that the measures taken to facilitate scalability
were working as expected - this includes the use of console output or system logging
to show that middleware resources were being freed up once they were no longer
needed by a deployment. Furthermore, system logs indicate when the system has

CHAPTER 8. SOFTWARE ENGINEERING TECHNIQUES AND PROCESSES 41

located a resource that can be shared between different deployments, for example,
when two deployments are setup to monitor the same remote host, we only need to
poll for state once and this can be used to update both front-end widgets.

8.6 Documentation

To encourage future development of the OmniPanel core, the OmniPanel codebase
has been documented using the industry standard python ‘docstring’ methodology.
A docstring is simply a string enclosed within triple speech marks that is appended
under each class and function declaration.
Class documentation describes the role of the class within the overall system, perhaps
relating it to a real-world entity.
Function documentation describes the role of each single function within a class,
including any parameters it takes and any values it returns.
Files containing docstrings can be processed using the command-line ‘pydoc’
application. This tool parses source-code to display human-readable documentation
directly within the terminal or to generate HTML files.
Further to the use of pydoc docstrings, individual python comments are included
throughout the codebase to clarify ambiguous sections of code.

Chapter 9

Implementation

9.1 Front-end

9.1.1 HTML

The HTML front-end exposed by Omnipanel has been mostly hard-coded in HTML
format. The code was written from scratch within a standard linux editor supporting
HTML syntax highlighting.
The front-end exposes two interfaces to the user; the login screen and the user’s
personalised control page. The former interface is completely static containing two
input fields, a header and an animated gif. The personalised control page, however,
contains elements that must be dynamically injected in to the web-page (delivering
the correct widgets to the correct user). This dynamic injection is achieved using the
Django framework which I will return to when discussing implementation of
OmniPanel core.

9.1.2 CSS

Cascading Style Sheets (CSS) have been used to apply styling to the aforementioned
HTML pages.
Key elements of each page such as the widget library, the four widget slots and the
configuration drop-down are all contained within seperate HTML DIV sections on the
page. Partitioning the document in this way allows for easy application of different
styling rules to different elements on the page.

9.1.3 JavaScript and JQuery

JavaScript is the industry standard programming language for implementing
client-side functionality within a web-browser. Offloading computation to the client is
desirable in our system as we wish to promote scaleability, minimising the
middleware resources that are consumed by each client.
JQuery is merely an extension to JavaScript, a library that presents a more conise and
well-supported API to the javascript engine.
JQuery is leveraged on many occasions within Omnipanel. It is used to manipulate
the Document Object Model (DOM), allowing us to dynamically create and
manipulate HTML elements on the page. It is also used to trigger AJAX interactions
between the client and OmniPanel core.

42

CHAPTER 9. IMPLEMENTATION 43

Allow us now to discuss these use-cases in more detail.

9.1.3.1 Growing The Host Input Table

JQuery is used to dynamically add new fields to the host configuration table
whenever the user clicks on the ‘+’ icon. This allows the user to manually input the
details of an unlimited number of remote hosts, all to be monitored and manipulated
by a single deployment.

var newRow = jQuery (’ # IPTable t r : l a s t ’) . c lone (t rue)
jQuery (newRow) . hide () ;
jQuery (newRow) . i n s e r t A f t e r (’ # IPTable t r : l a s t ’) ;
jQuery (newRow) . slideDown () ;

The code above demonstrates the use of a JQuery Selector to easily select the final row
element of the table named ‘IPTable’.
It also demonstrates how this easily be cloned, hidden, appended to the end of the
table and then animated in to display for the user.

Other Uses Of JQuery:

9.1.3.2 Front-end Polling For Updates

As already discussed in the design section, retrieving state from a remote server is a
complicated process. It begins, however, with a single poll from a front-end widget to
OmniPanel system.
Below is a process diagram depicting the role of JQuery in the polling process:

Figure 9.1: JQuery decides whether a widget should poll for update

CHAPTER 9. IMPLEMENTATION 44

9.1.3.3 Front-end Heartbeat

JQuery is used at the front-end to repeatedly send a ‘heartbeat’ message to OmniPanel
every 30 seconds. Since this instruction will only continue to execute whilst the
end-user has the control page loaded in their browser, the heartbeat message signals
to OmniPanel that the system is still in use. When heartbeat messages are no longer
being received from a client, we can assume they have navigated away from the page
and that their associated system resources can be torn-down.

9.1.3.4 Autodiscovery of hosts

JQuery is used in two different ways within OmniPanels host auto-discovery
mechanism. Firstly, it is used to retrieve the beacon identifier entered by the user and
forwards this to the core. Secondly, it is used to parse the list of IP addresses returned
from OmniPanel, unpacking them from the JSON 1 format and appending them to the
list of configured hosts at the front-end.

9.1.3.5 Toggling the visibility of DIV elements

Omnipanel makes extensive use of a JQuery script called ‘Animated Collapse’ 2. This
script leverages JQuery to simplify the process of showing and hiding DIV elements
on a HTML page. It is this script that dynamically toggles the visibility of the host
configuration drop-down as well as sub-menus within the drop-down window.
The ‘Animated Collapse’ script is entirely the work of the original author(s) cited on
the dynamic drive website. The work is not my own.

1http://www.json.org
2http://www.dynamicdrive.com/dynamicindex17/animatedcollapse.htm

CHAPTER 9. IMPLEMENTATION 45

9.1.4 DAJAX (Django AJAX)

Asynchronous Javascript And XML (AJAX) is a generic term often applied to
technology that allows for asynchronous communication between web browser and
server. AJAX technologies allow for the automatic updating of page content without
the need to refresh the page in its entirety.
This type of behaviour is desirable within OmniPanel for the automatic update of
widget content and also for the client-OmniPanel interactions that you wish to hide
from the user (such as heartbeats).
Unfortunately, AJAX interactions are often very complicated to code from scratch as
one must develop a server-side script, a function to marshall data in to XML for
transmission and a client-side javascript function to present the data on the web-page.
DAJAX 3 (Django AJAX) is a Django (See Middleware, Django) library that simplifies
the process of incorporating AJAX interactions within a Django project.
Through interactions with special client-side and server-side objects, implementing
AJAX interactions becomes a trivial task.
As an example, allow us to study how DAJAX is used within the host auto-discovery
tool.

9.1.4.1 Host Auto-Discovery

Figure 9.2: TESTING

HTML Integration
The first step in the discovery process is the transmission of the user-supplied Beacon
Identifier to the OmniPanel system. This is achieved through a call to the DAJAX
function ‘beacon’, passing the identifier as an argument.

Dajax ice . apps . ControlPage . beacon (Dajax . process ,{ ’ beaconID ’ : ’ he l lo ’ })

The Dajaxice element with which we interact is a special JavaScript object, created and
embedded in the HTML at run-time by the DAJAX library. The object exposes a
function called ‘beacon’ because we have declared the function beacon within a
special Django ajax.py file (see next page). Any arguments to be passed to the function
are presented within the JSON 4 notation.

3http://www.dajaxproject.com/
4http://www.json.org

CHAPTER 9. IMPLEMENTATION 46

The DAJAX Function
Below is the implementation of the ‘beacon’ function written with the ajax.py file
located in the apps/ControlPage directory

@ d a j a x i c e r e g i s t e r
def beacon (request , beaconID) :

dajax = Dajax ()
payload = get IPs (’ beaconID ’)
dajax . add data (payload , ’ unpackerFunction ’)
re turn dajax . j son () \begin{ f i g u r e } [h !]

\ c e n t e r i n g
\ inc ludegraphics [s c a l e =0 . 6]{ images/diagrams/dajax . png}
\ capt ion{TESTING}
\end{ f i g u r e }

The code above demonstrates how values passed from the client as JSON arrive at the
function as runtime arguments.
We see use of the DAJAX ‘add data’ function to specify data for transmission to the
client and also to identify the client-side function (unpackerFunction) that should be
used to unpack the data.
Finally, DAJAX trivialises the conversion to JSON prior to transmission across the
network.

Other Uses Of DAJAX:

9.1.4.2 Client Heartbeat

The DAJAX library is used to transmit the heart-beat message from the client to the
middleware, indicating that they still have the control page loaded in their browser.
This message leverages AJAX so that heartbeat transmission is invisible to the user.
Transmission of a synchronous request would require a reload of the entire control
page for each heartbeat message that is sent.

9.1.4.3 Updating Widget Content

The DAJAX library makes it possible for widget content to be automatically updated
without the need for reloading of the entire control page. Widgets on a page poll the
middleware on a regular basis (triggered using JQuery) and receive a populated
widget template in response. This populated template is then set as the widget
content.

CHAPTER 9. IMPLEMENTATION 47

9.2 Middleware

9.2.1 Pycrypto

The functionality of OmniPanel relies upon the user providing sensitive information
about their remote hosts including the SSH credentials needed to access them. It is
essential that this information be stored in a secure manner to protect user’s systems
from attack should OmniPanel somehow be breached.

Pycrypto 5 is a python library that simplifies the process of data encryption. It
provides implementations of the popular encryption standards such as AES, Blowfish,
RC5 and DES.
Below is a fragment of code in which the pycrypto library is used to encrypt the
contents of a deployment host file, prior to writing to disk.

p l a i n t e x t = g e t s e n s i t i v e d a t a ()
des3 = DES3 . new(s e t t i n g s . DES3 KEY , DES3 .MODE ECB)
ciph = des3 . encrypt (p l a i n t e x t)
h o s t F i l e . wri te (ciph)
h o s t F i l e . c l o s e ()

Pycrypto provides a DES3 object, capable of applying the third variant of the Data
Encryption Standard (DES) algorithm on sensitive information. The DES3 object is
instantiated with a secret key used for encryption/decryption and also a mode of
operation.
Encryption is performed by the DES3 ‘encrypt’ function, passing our sensitive
plaintext as an argument and returning the ciphertext as an output. The encrypted
ciphertext can then be written to disk.

9.2.2 PXSSH

OmniPanel uses SSH commands to issue commands to remote host(s). The commands
issued may be part of the polling process used to retrieve server state or may be
issued to manipulate the state of a server in response to a users widget interaction.
PXSSH 6 is a python SSH library used with OmniPanel to setup and use SSH
connections.
The code below demonstrates the use of PXSSH to setup an SSH connection, issue the
‘ls’ command and store the servers response.

ssh = pxssh . pxssh (timeout = 0 . 5)
ssh . log in (’ 1 2 7 . 0 . 0 . 1 ’ , ’ user ’ , ’ password ’)
ssh . prompt ()
ssh . sendl ine (’ l s ’)
response = ssh . before ()

5http://www.pycrypto.org
6http://pexpect.sourceforge.net/pxssh.html

CHAPTER 9. IMPLEMENTATION 48

9.2.3 Django

Django 7 is a web application framework that leverages the Model View Controller
paradigm to support rapid web development.
Many features of Django make it the obvious choice of framework to underpin
OmniPanel:

Database Integration
In the design section we discuss three database tables, User, Widget and Deployment,
that will be used to store persistant state of the OmniPanel system.
Django makes database integration a trivial task will full support to create tables,
write new data in rows and to retrieve data using queries.
Creating a new database table involves the definition of a Django ‘model’ as shown
below:

c l a s s Widget (models . Model) :
name = models . Tex tF ie ld (max length =20)
content = models . Tex tF ie ld (max length =1000000)
backend = models . Tex tF ie ld (max length =”1000” , d e f a u l t =”backends/ d e f a u l t . py ”)

This will create a database table with 3 varchar columns of different size and default
value.
Adding an entry within the newly created table is as simple as instantiating a Widget
object and calling the ‘save’ function upon it.

w = Widget (name= ’My Widget ’ , content = ’ Hello World ’ , backend=myBackEnd . py)
w. save ()

Retrieving values from the database is equally trivial as Django can build appropriate
database queries on the users behalf:

retr ievedWidget = Widget . o b j e c t s . get (name= ’My Widget ’)

The Templating System
A lot of OmniPanel’s functionality depends upon the system’s ability to dynamically
inject values in to a web-page at run-time. For example, when a user loads their
Control Panel, content must be injected to each of their widget slots depending on
whether that slot contains a deployment.
Django provides a templating mechanism that makes it easy to inject run-time data
within a HTML page. Template definitions contain standard HTML and optionally
some Django specific constructs such as value place-holders, conditional statements
and data iterators. Prior to transmission to the client, data can be passed to a template
where it will be operated upon by these special template functions to populate the
page with meaningful values. For example, the code below shows how a template
iterator is used to process a list of available widgets (retrieved from the database) and
display them within the widget library:

{% f o r widget in widgets %}
{{widget . name}} <input type=”checkbox ” name=”{{widget . id}}” />

{%endfor%}

7https://www.djangoproject.com/

Chapter 10

Testing

10.1 Testing Methodology

Testing the OmniPanel system involves the testing of both it’s functionality and it’s
performance (since performance relates directly to scalability).
To aid in the testing process, a trivial widget and back-end script were developed to
interact with a java application running upon remote host(s).
The role of the Java application (See Appendix A) was to simply present a full-screen
window on display of the computer it runs upon. The colour of this window could
then be manipulated via the issue of commands in to the application command-line,
thus making it possible to remotely interact with the application over SSH.
The task of monitoring and manipulating screen colours was chosen as it lends itself
well to the testing process. It is easy to compare the reported state of a machine
against it’s actual state through simple observation of the host’s physical display.
Furthermore, the toggling of screen colour makes it easy to establish whether
OmniPanel is issueing the correct commands to the correct host(s), in response to user
interaction.
Since much of Omnipanel’s complexity resides within the internal system, not all
testing can be achieved through real-world observation. Evaluation the behaviour of
the resource management functions, for example, requires the inspection of run-time
console output to confirm that unused resources are being reclaimed and that internal
components are being shared by different widget deployments.

49

CHAPTER 10. TESTING 50

10.2 Function Testing

10.2.1 Widget Deployment

No. Description Expected Outcome Pass?
1. Test to ensure that selection of a

single widget within the library
displays the configuration options.

Configuration drop-down becomes
visible on control panel.

Yes

2. Test to ensure that multiple widgets
cannot be deployed at once.

Configuration drop-down hides
when more than one widget is
chosen in the library

Yes

3. Test to ensure that an unlimited
number of hosts can be configured
by the user.

New row of input fields is
appended to host configuration
table when the ‘+’ icon clicked.

Yes

4. Test to ensure that the user can
choose the auto-discover hosts to
associate with a widget.

Clicking the ‘AutoDiscover Hosts’
will display the input for a beacon
identifier.

Yes

5. Test to ensure the host discovery
tool functions correctly.

IP addresses of hosts transmitting
a user-specified beacon identifer
are appended to host configuration
table.

Yes

6. Test to ensure the user specify a
range of IP addresses to deploy
against.

Clicking the ‘Add A Range Of IPs’
option displays the input fields for
defining a range of IP addresses.

Yes

7. Test to ensure the the IP range
generator functions correctly

Correct IP addresses are generated
given a common IP subnet,
range-start and range-end values.

Yes

8. Test to ensure that a widget can be
deployed to a specified slot.

The content of a widget appears in
the user defined slot of the control
page.

Yes

10.2.2 Monitoring State

CHAPTER 10. TESTING 51

No. Description Expected Outcome Pass?
1. Test to ensure widget content

automatically updates.
Setup widget to monitor local
machine. Changes manually made
to a locally monitored machine are
propagated to widget content

Yes

2. Test to ensure the update process
pauses during user interaction.

Change to locally monitored
machine are not displayed in
widget content whilst mouse is
hovered over the slot.

Yes

3. Test to ensure user can alter which
remote host they monitor.

When configured against 2 local
hosts of differing state, the content
of the widget adjust with switching
of host.

Yes

4. Allow user to manipulate widget
refresh rate.

Through monitoring of server
output, it can be seen that a widget
polls less often when a higher
refresh rate is chosen

Yes

10.2.3 Manipulating State

No. Description Expected Outcome Pass?
1. Test to ensure interactions with

a single-host deployment are
handled correctly.

When the user makes an
interaction, the state of a single
remote host is adjusted accordingly.

Yes

2. Test to ensure interactions with a
multi-host deployment are handled
correctly.

When the user makes an
interaction, the state of multiple
remote hosts is adjusted
accordingly.

Yes

3. Test to ensure appropriate
commands are issued in response
to a user interaction.

When using the ‘Colour Control’
widget, the user-selected colour is
displayed on remote display(s)

Yes

10.2.4 Error Handling

CHAPTER 10. TESTING 52

No. Description Expected Outcome Pass?
1. Test to ensure failed SSH

connections are handled gracefully.
When an SSH connection cannot
be established, the system remains
online and sends a report email to
deployment owner.

Yes

2. Test to ensure unimplemented
state polling functions are handled
gracefully.

When a compulsory function has
not been defined within a script,
polling ceases and the owner is
emailed

Yes

3. Test to ensure unimplemented
application-specific functions are
handled gracefully.

When a function specified within a
HTML widget does not exist within
the associated back-end script, the
system remains online and sends
an email report to the deployment
owner.

Yes

CHAPTER 10. TESTING 53

10.2.5 Internal Mechanisms

No. Description Expected Outcome Pass?
1. Test to ensure the heartbeat

mechanism detects when a user
has closed their session.

Console output should indicate
that a user misses a beat and on the
second miss is assumed to have left.

Yes

2. Test to ensure components are
torn-down when a widget is
deleted.

Console output should
indicate that a StatePoller and
CommandChannel objects have
died.

Yes

3. Test to ensure components are
torn-down when a users logs out.

Console output should
indicate that a StatePoller and
CommandChannel objects have
died.

Yes

4. Test to ensure components are
torn-down when a users navigates
away from the page.

Console output should
indicate that a StatePoller and
CommandChannel objects have
died.

Yes

5. Test to ensure components are
shared whenever possible.

Console output should indicate
sharing of a StatePoller object
when two deployments are
configured against the same
remote application.

Yes

6. Test to ensure that sensitive data is
held for no longer than required.

Upon deletion of a widget from a
user’s control panel, the associated
host-file is deleted from the system.

Yes

CHAPTER 10. TESTING 54

10.3 Scalability Testing

Testing the true scalability of OmniPanel is a difficult task due to the limited resources
available within the lab environment. There is also the question of how to quantify
scaleability, thus this section of testing somewhat speculative at best.
To investigate OmniPanel’s performance when interacting with multiple remote
hosts, a deployment was created to control a group of 10 and then a group of 20
computers in the Computer Science Senior Honours lab. Photographs of this exercise
can be found in Appendix E.
The unix command-line tool HTOP 1 was used to monitor the system resources being
used by Django framework (upon which OmniPanel runs) and also the SSH
connections that are spawned for interaction with remote hosts.
The data gathered using HTOP is presented below:

CPU Usage:

OmniPanel Core SSH Total
1 Host 0.0 0.0 0.0
10 Hosts 0.0 0.0 0.0
20 Hosts 1.0 0.0 1.0

Memory Usage:

OmniPanel Core SSH Total
1 Host 1.0 0.1 1.1
10 Hosts 1.0 1.0 2.0
20 Hosts 1.0 2.0 3.0

1http://htop.sourceforge.net/

Chapter 11

Evaluation

11.1 Analysis Of Testing

Chapter 10 of this report describes how OmniPanel has been tested in terms of both
functionality and scaleability. The results of this testing shall now be discussed.

11.1.1 Function Testing

The results of the function testing shows that the core functionality of OmniPanel
works correctly. The state of one or more remote servers is clearly presented within
widget content and can be manipulated via interaction with widget input elements.
Support for new applications can be successfully introduced to the system through
the upload of new front-end and back-end files.
The resource management mechanisms within OmniPanel also seem to function
correctly, identifying and tearing-down the components that are no longer needed as
well as recognising where an existing component can be used to service multiple
requests.

11.1.2 Scalability Testing

The data gathered from scalability testing shows that an SSH connection to a remote
host consumes 0.1% of system memory and neglible amount of CPU time.
Adding hosts to the system had no noticeable effect on the memory used by the
OmniPanel core and only a very small effect on CPU time (rising from 1% to 2% with
the addition of 19 hosts).
The numbers above indicate that the addition of a remote host has next to no
noticeable cost to the system. Furthermore, it should be noted that these figures were
captured when OmniPanel was deployed on a standard personal use laptop.
Consuming 2% of memory corresponds to only 40mb of physical RAM. Deployment
on an industrial server, therefore, would add support for many more deployments
prior to resource saturation.
Whilst the results of our scalability testing are in no way conclusive, provisional data
would suggest that OmniPanel does indeed scale nicely.

55

CHAPTER 11. EVALUATION 56

11.2 Comparison To Original Objectives

In this section, we will compare the final implementation of OmniPanel against the set
of objectives outlined at the beginning of the project:

11.2.1 Primary Objectives

Users can create persistant, personalised Control Pages

A personalised control page can be built by a user through the deployments of widget
upon a page. A system-wide library of available widgets is presented to the user
which, when selected, displays a configuration menu so they can be associated with
remote hosts.
Widgets can be deployed in to one of four slots on the Control Page with the user’s
deployments being saved against their account for persistant usage.

Users can use their deployed widgets to monitor and manipulate server state

Widgets are defined as HTML documents containing standard HTML input elements
and special place-holder strings (encapsulated within ‘!!’ characters). User’s can
interact with input elements to represent their desired state for the remote server.
These interactions are routed to a widget’s corresponding back-end script that will
generate appropriate commands for issue to remote host(s). The place-holder strings
used within HTML definitions are overwritten at run-time by the OmniPanel system
to inject current server state prior to presentation to the user.

Users can extend the functionality provided by the OmniPanel system

The functionality of the system can be extended by the user through the upload of new
front-end and back-end files. The front-end file is simply the HTML widget definition
containing input elements and special template place-holders. The back-end file is a
python script containing two compulsory functions used by OmniPanel to retrieve
and process server state and one or more widget-specific functions that process a
user’s interaction with a widget and output appropriate commands.
Once uploaded, new functionality is exposed globally to all users of the system.

11.2.2 Secondary Objectives

A single deployment can monitor and manipulate multiple remote hosts

There is no limit to the number of hosts that can be associated with a widget
deployment due to an input table that can be dynamically grown by the user.
Once deployed, user interactions are pushed to all remote hosts automatically. The
user can only monitor the state of one host at a time due to limitations in screen space
and computational resources. The user can adjust, however, the host that they wish to
monitor through interaction with a drop-down list.

Develop a range of front-end and back-end files, demonstrating system flexibility

Currently, two front-end and back-end pairings have been written. The first simply
interacts with a remote java application to manipulate and monitor the colour of a

CHAPTER 11. EVALUATION 57

full-screen window. This was developed for use in the testing process as observing the
colour of a computer monitor helps us to quickly see whether state is being correctly
retrieved and manipulated.
The second front-end and back-end pairing allows the user to interact with a
CounterStrike 1 gaming server (See Appendix C). Users are able to monitor and adjust
the map currently being played and can also interact with single players on the server
(setting them on fire as an admin punishment or kicking them from the server
entirely).

11.2.3 Tertiary Objectives

Allow for the modification of existing deployments, adding or removing remote
hosts

This objective has not been met due to time restrictions but could easily be
implemented. The host auto-discovery tool already demonstrates how a list of IPs can
be sent from the OmniPanel server and presented within HTML. Users could then
interact with this list to add or remove hosts before submitting the updated list to the
server for reprocessing

11.3 Meeting Of Requirements

All functional requirements outlined at the start of this document have been achieved.
Non-functional requirements relating to timely system responses and graceful
handing of unexpected errors are harder to discuss. The definition of a timely
response can vary significantly depending on the user and the nature of the
application with which they are interacting. Furthermore, the responsiveness of the
system is likely to vary depending on system load. I acknowledge that the relatively
small scale testing performed thus far may not give a true representation of timeliness.
With regard to the handling of unexpected errors, the system has certainly been
written to minimise the number of dangerous assumptions made in the codebase.
Whilst it cannot be guaranteed that all edge cases have been covered, I feel confident
in saying that the obvious failure modes (SSH login failure, missing back-end
functionality) have been dealt with.

1http://store.steampowered.com/css

CHAPTER 11. EVALUATION 58

11.4 Comparison With Similar Software

In the Context-Survey earlier in this report, we discuss several technologies that have
clear overlap with the OmniPanel project. None of these technologies, however, are
trying to solve exactly the same problem, nor do they share the same motivations, as
Omnipanel.
OmniPanel, in essence, is a middleware that aims to expose within a web interface,
functionality that was originally only available via command-line interaction. Existing
projects such as cPanel [3] and Puppet [5], whilst offering web control panels and
overviews, work to expose the configuration of an application or environment, rather
than exposing the functionality of an application itself.
Oracle Salt [7] comes very close to solving the same problem as OmniPanel in the
sense that it aims to encapsulate the functionality of what was originally a stand-alone
application, and expose it as a distributed system component with which other
systems can interact. The key distinction here, however, is that the exposed
functionality is for the benefit of system integration, rather than for the benefit of a
single end-user. The way in which the component exposes itself is therefore a
computer-oriented, web-service style, leveraging the Web Service Definition
Language (WSDL) 2. OmniPanel, in contrast, presents server state and available
functionality in a human-readable, point and click HTML interface.
Finally, two distinct properties make OmniPanel unique from any existing projects
to-date. Firstly, since manipulation of a remote host is achieved entirely via SSH
communication, there is no need to modify the remote host in any way, installing
software, opening ports or adjusting security permissions. Systems such as Puppet,
however, require a ‘Puppet Agent’ to be installed on any remote hosts, taking
commands and reporting state back to a central ‘dashboard’ service.
Secondly, all existing Web Control-Panel and server configuration tools are
closed-source, offering the user no facility to tailor the system to their needs.
OmniPanel, however, is fully extensible making it easy for even the most
inexperienced programmers to write new front-end and back-end definitions before
uploading them to the system and making the new functionality available to all.

2http://www.w3.org/TR/wsdl

CHAPTER 11. EVALUATION 59

11.5 Future Work

Support Deployment Reconfiguration

A tertiary requirement of this project was to provide a mechanism by which an
existing deployment could be reconfigured to add or remove hosts, for example.
This requirement, unfortunately, has not yet been realised within OmniPanel.
Provision of such a facility would no doubt add great value to the project, removing
the need to redeploy from scratch whenever the needs of a user change.
Implementing a reconfiguration tool should be possible without too much work. The
host auto-discovery mechanism has already demonstrated how AJAX can be used to
pass a list of host IP addresses to the client and have them rendered on screen.
Displaying the current configuration of a deployment should therefore be a trivial
problem. Any amendments made to the list of hosts can then be delivered to
OmniPanel via form POST data, as per the original deployment process.

Facilitate Unlimited Deployments

Currently a user can deploy a maximum of four widgets upon their Control Page.
This is due to the limited number of widget slots available in their web interface.
It would not be too difficult to develop the system so that additional slots can be
appended to a user’s interface at run-time. This would, however, involve new
functionality to be implemented in both the front-end web-browser (which must
render the slot on screen) and the internal OmniPanel system (which must be aware of
this slot in order to inject content).

Improved Error Reporting

Currently, users are informed of OmniPanel errors via emails directed to their
personal accounts. This is far from a perfect solution assuming not only that users
have a mail client open when using OmniPanel, but also assuming that emails will be
delivered to the user in a timely manner.
A more appropriate reporting mechanism would be to display error messages directly
within a user’s web control page. Unfortunately, error reporting was not considered
when designing OmniPanels architecture and to restructure the system so late in to
the project would be foolish.
I would suggest that an error reporting mechanism could when be amalgamated
within the existing client heartbeat system. In this revised approach, each heartbeat
message could be seen not only as an indicator of a user’s presence, but also as their
polling for error reports. Any undelivered reports could then be transmitted back to
the user in response to their heart-beat message.

Improved Input Validation

Currently, OmniPanel delivers a degree of protection from invalid user input but is
not entirely fool-proof. For example, the system responds gracefully to invalid
back-end scripts in which compulsory or user-defined functions have not been
implemented. The system also protects against some nonsense interactions, for
example, a user cannot try to deploy multiple widgets within a single slot as the
configuration menu will only display when a single widget is selected in the library.

CHAPTER 11. EVALUATION 60

OmniPanel does not currently perform any validation on the values that are entered
in to the host configuration menu itself. For example, a user can enter any value they
like for an IP address, rather than enforcing it be a string of numbers and dots.
Input validation could be implemented within the OmniPanel core itself or even
better, at the client-side using JQuery (thus offloading the expense of validation to the
client).

Create User Sign-up Screen

OmniPanel is currently a closed project where new user accounts must be created
manually by a system administrator. A user sign-up form must be implemented prior
to public release so that user accounts be created autonomously by the OmniPanel
core.

Chapter 12

Conclusion

12.1 Achievements

12.1.1 Flexibility

OmniPanel has been developed in such a way that a web control interface can be
developed for any application that originally exposes its functionality via command
line.
OmniPanel is, therefore, a hugely flexible system that can be used to monitor and
interact not only with server applications, but also with local applications such as
media players or cronjob managers 1.

12.1.2 Extensability

Having a system that is flexible enough to interact with any command-line
application is useless without also making it possible for newly developed
functionality to be introduced.
OmniPanel promotes extensability through the provision of it’s widget upload facility,
whereby new widgets and back-end script can be uploaded and made available for
use immediately.
For scenarios where front-end and back-end implementations do not exist for your
application, anyone with a basic grasp of HTML and python scripting can implement
the new functionality themselves. This is made possible by the sensible manner in
which OmniPanel routes data between front-end and back-end files whilst also
ensuring internal complex behaviors are hidden from the user entirely.

12.1.3 Scaleability

Provisional studies of OmniPanels performance with multi-host deployments suggest
that OmniPanel copes well when required to interact with many machines
simultaneously. This can be attributed to the careful resource management
implemented within OmniPanel, tearing-down superfluous components whenever
possible and detecting scenarious where existing components can be re-used.

1http://unixhelp.ed.ac.uk/CGI/man-cgi?crontab+5

61

CHAPTER 12. CONCLUSION 62

12.2 Final Conclusion

OmniPanel achieves all the primary and secondary objectives that were outlined at
the beginning of the project. Whilst there are several ways in which the project could
be improved, the desired core functionlity has certainly been attained.
OmniPanel builds upon work from other web-based control services to expose
application level functionality rather than exposing system configuration only.
OmniPanel succeeds in presenting its functionality in a friendly, uncomplicated
manner. Users of the system should have no problem interacting with familiar HTML
forms to manipulate that state of their remote applications. Furthermore, developers
with even a rudimentary knowledge of HTML and python should be write new
front-end and back-end files so that support for new applications appears all the time.
The use of strong software engineering practices such as revision control, code
documentation and an agile approach to programming have enabled me to deliver a
product on time and to a high standard.

Chapter 13

Appendices

A Java Colour Server Application

The source code for the Java application was used for function and scaleability testing
can be found in the directory Code/tools/ColourServer
The application can be run using the following command:

j ava ColourServer

B Colour Control Widget And Script

The widget definition for the Colour Control functionality can be found in the
directory Code/frontends/ColourWidget.html
The back-end script for the Colour Control functionality can be found in the directory
Code/backends/colour.py

C CounterStrike Widget And Script

The widget definition for the CounterStrike functionality can be found in the directory
Code/frontends/CounterStrike.html
The back-end script for the CounterStrike functionality can be found in the directory
Code/backends/counterstrike.py

D Host Auto-discovery Beacon Agent

The python Beacon Agent script can be found in the directory Code/tools/Beacon
The application can be run using the following command:

python Beacon . py

E Pictures From Scaleability Testing

63

CHAPTER 13. APPENDICES 64

Figure 13.1: Using OmniPanel to control the Java ColourServer application on 20
remote hosts

Figure 13.2: Using OmniPanel to control the Java ColourServer application on 20
remote hosts

Bibliography

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. A view of cloud computing. Commun. ACM, 53(4):50–58, April
2010.

[2] M. Bakery and R. Buyyaz. Cluster computing at a glance. High Performance
Cluster Computing: Architectures and Systems, pages 3–47, 1999.

[3] cPanel. cpanel and whm overview.
http://www.cpanel.net/products/cpanelwhm/, 2011.

[4] Thomas Goirand. Domain technologie control.
http://gplhost.com/software-dtc.html, 2010.

[5] Puppet Labs. What is puppet.
http://puppetlabs.com/puppet/what-is-puppet/, 2012.

[6] J.P. Navarro, R. Evard, D. Nurmi, and N. Desai. Scalable cluster
administration-chiba city i approach and lessons learned. In Cluster Computing,
2002. Proceedings. 2002 IEEE International Conference on, pages 215–221. IEEE, 2002.

[7] Oracle. Oracle salt overview. http://docs.oracle.com/cd/E13161_01/
salt/docs10gr3/overview/over.html, 2008.

[8] Philip M. Papadopoulos, Mason J. Katz, and Greg Bruno. Npaci rocks: tools and
techniques for easily deploying manageable linux clusters. Concurrency and
Computation: Practice and Experience, 15(7-8):707–725, 2003.

[9] B. Sotomayor, R.S. Montero, I.M. Llorente, and I. Foster. Virtual infrastructure
management in private and hybrid clouds. Internet Computing, IEEE, 13(5):14 –22,
sept.-oct. 2009.

[10] Yi Yu and S. Bhatti. Energy measurement for the cloud. In Parallel and Distributed
Processing with Applications (ISPA), 2010 International Symposium on, pages 619
–624, sept. 2010.

65

http://www.cpanel.net/products/cpanelwhm/
http://gplhost.com/software-dtc.html
http://puppetlabs.com/puppet/what-is-puppet/
http://docs.oracle.com/cd/E13161_01/salt/docs10gr3/overview/over.html
http://docs.oracle.com/cd/E13161_01/salt/docs10gr3/overview/over.html

	Abstract
	Introduction
	Problem Specification
	Useful Definitions
	Widget
	Deployment
	Back-end
	OmniPanel
	Host
	Screen

	Project success
	Outline of report

	Objectives
	Primary Objectives
	Secondary Objectives
	Tertiary Objectives

	Requirements
	Control Page
	OmniPanel Core
	Back-end Scripts

	Context Survey
	Key Areas
	Cloud Computing
	Cluster Administration

	Existing systems
	Puppet
	Oracle SALT
	Domain Technologie Control
	cPanel

	Ethics
	Data Security
	Privacy

	System Architecture
	Database Models
	Monitoring A Host
	Widget Placeholders
	Getting Template Values
	Multiple StatePoller Objects
	Back-End Involvement In State Retrieval

	Manipulating A Host
	Exposing Functionality Within A Widget
	Routing An Interaction
	Generating Commands

	Issueing Commands To The Remote Host(s)
	Host Discovery
	Receiving A Beacon
	Reporting Discovered Hosts

	Client Heartbeats
	Designing For Scalability

	User Manual
	Deploying A Widget
	Monitoring A Host
	Manipulating A Host
	Uploading New Functionality

	Software engineering techniques and processes
	Agile Programming
	Version Control
	Coding Standards
	Development Logs
	Testing
	Documentation

	Implementation
	Front-end
	HTML
	CSS
	JavaScript and JQuery
	DAJAX (Django AJAX)

	Middleware
	Pycrypto
	PXSSH
	Django

	Testing
	Testing Methodology
	Function Testing
	Widget Deployment
	Monitoring State
	Manipulating State
	Error Handling
	Internal Mechanisms

	Scalability Testing

	Evaluation
	Analysis Of Testing
	Function Testing
	Scalability Testing

	Comparison To Original Objectives
	Primary Objectives
	Secondary Objectives
	Tertiary Objectives

	Meeting Of Requirements
	Comparison With Similar Software
	Future Work

	Conclusion
	Achievements
	Flexibility
	Extensability
	Scaleability

	Final Conclusion

	Appendices
	Java Colour Server Application
	Colour Control Widget And Script
	CounterStrike Widget And Script
	Host Auto-discovery Beacon Agent
	Pictures From Scaleability Testing

